

A283386


T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than two of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly two elements.


7



0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 19, 60, 19, 0, 0, 91, 532, 532, 91, 0, 0, 399, 4420, 8087, 4420, 399, 0, 0, 1734, 34531, 116624, 116624, 34531, 1734, 0, 0, 7257, 257416, 1592250, 2993934, 1592250, 257416, 7257, 0, 0, 29754, 1862717, 20788531, 71707838
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,8


COMMENTS

Table starts
.0.....0........0..........0............0...............0.................0
.0.....1........3.........19...........91.............399..............1734
.0.....3.......60........532.........4420...........34531............257416
.0....19......532.......8087.......116624.........1592250..........20788531
.0....91.....4420.....116624......2993934........71707838........1644385909
.0...399....34531....1592250.....71707838......3007934404......120672330232
.0..1734...257416...20788531...1644385909....120672330232.....8473366210380
.0..7257..1862717..264040297..36631580212...4702791428260...577497122717510
.0.29754.13180270.3282238215.797807876394.179057922328623.38429377558548084


LINKS

R. H. Hardin, Table of n, a(n) for n = 1..180


FORMULA

Empirical for column k:
k=1: a(n) = a(n1)
k=2: [order 24]
k=3: [order 32]
k=4: [order 57] for n>58


EXAMPLE

Some solutions for n=4 k=4
..1..1..1..0. .1..0..1..1. .0..0..1..0. .1..1..1..0. .0..0..0..1
..0..0..1..0. .1..0..1..1. .1..1..0..0. .1..0..0..1. .1..0..1..0
..0..0..1..0. .0..0..0..0. .1..0..1..0. .0..0..1..1. .1..0..1..1
..0..1..1..1. .0..1..0..1. .1..1..0..0. .1..0..0..1. .0..1..1..0


CROSSREFS

Sequence in context: A309651 A305541 A280810 * A278385 A245626 A307233
Adjacent sequences: A283383 A283384 A283385 * A283387 A283388 A283389


KEYWORD

nonn,tabl


AUTHOR

R. H. Hardin, Mar 06 2017


STATUS

approved



